INTEGRATED ALGEBRA 1 SUPPLEMENTARY HANDOUT FOR LESSON 2.3A

(Translating Words into Algebra)

DISCUSSION:

• Among the statements I hear most often as a math teacher are:

"I hate word problems!" and

"Why do I have to learn how to solve word problems?"

(Both are right up there with "<u>I hate fractions!</u>")

- What you need to realize is that calculators and computers can be used to do most math. However, one thing calculators and computers cannot do is translate a problem situation into a form that can be solved mathematically.
- Additionally, many of the skills you use in solving word problems can be adapted to solve real-life problems for home and work.
- Since problem solving is difficult and frustrating for most people, we will spread it out over the remainder of the course, taking only "bite-sized" pieces while doing lots of practice and review.
- In this lesson we will learn about some *KEYWORDS* that make it easier to translate <u>verbal expressions</u> into <u>algebraic expressions</u>.

EXAMPLES OF USING ADDITION KEYWORDS IN ALGEBRA:

•	4 more than a number $N + 4$ or $4 + N$
•	x increased by 11 x + 11 or 11 + x
•	the sum of k and 9 $\mathbf{k} + 9$ or $9 + \mathbf{k}$
٠	the total of 5 and D $5 + \mathbf{D}$ or $\mathbf{D} + 5$
•	p plus 3 p + 3 or 3 + p
•	p plus 3 in all p + 3 or 3 + p
•	8 added to a number y $y + 8$ or $8 + y$

NOTE: Because **addition is commutative**, the **order** of the terms in the expression **DOES NOT matter**. For example: 2 + 5 = 5 + 2 (because 7 = 7)

EXAMPLES OF USING <u>SUBTRACTION KEYWORDS</u> IN ALGEBRA:

•	4 less than a number $N - 4$
•	x decreased by 11 $x - 11$
•	the difference between k and 9 $k-9$
•	the difference of a number and 7 $N-7$
•	the difference of 7 and a number $7 - N$
•	p minus 3 p-3
•	8 subtracted from a number y $y - 8$

NOTE: Because **subtraction IS NOT commutative**, the **order** of the terms in the expression **DOES matter**. For example: $2 - 5 \neq 5 - 2$ (because $-3 \neq 3$)

INTEGRATED ALGEBRA 1 SUPPLEMENTARY HANDOUT FOR LESSON 2.3A

(Translating Words into Algebra)

EXAMPLES OF USING MULTIPLICATION KEYWORDS IN ALGEBRA:

- 4 times a number ------ 4 N; N 4; or 4N
- x multiplied by 11 ------ x * 11; 11 * x; or 11x
- p tripled ------ p(3); (3)(p); or 3p
- the product of 8 and m ----- $8 \times m$; $m \times 8$; or 8m
- double D ------ 2 D; D 2; or 2D
- p tripled ------ p(3); (3)(p); or 3p

• two-thirds of z ------
$$(\frac{2}{3})z; (\frac{2}{3})(z);$$
 or $\frac{2}{3}z$

NOTES: 1. Because **multiplication is commutative**, the **order** of the terms in the expression **DOES NOT matter**. For example: $2 \cdot 5 = 5 \cdot 2$ (because 10 = 10)

2. You have probably noticed by now that there are many different ways to indicate multiplication. For example, **"five times q"** can be written in any of the ways shown below. (*It is important that you learn to recognize these forms since we see each of them at sometime in our travels.*)

 $5 \times q$ 5 * q $5 \bullet q$ 5(q) (5)q (5)(q) 5q

EXAMPLES OF USING **DIVISION KEYWORDS** IN ALGEBRA:

•	4 divided into a number $N \div 4$
•	a number divided into 4 $4/_N$
•	x divided by 11 $\mathbf{x} \div 11$
•	96 split into q equal parts 96 ÷ q
•	the quotient of k and 9 $\mathbf{k} \div 9$
•	the quotient of 9 and k 9 ÷ k

NOTE: Because **division IS NOT commutative**, the **order** of the terms in the expression **DOES matter**. For example: $10 \div 5 \neq 5 \div 10$ (because $2 \neq \frac{1}{2}$)

EXAMPLES OF USING A <u>COMBINATION OF KEYWORDS</u> IN ALGEBRA:

- 4 more than 7 times a number ------ 4 + 7N or 7N + 4
- 4 less than 7 times a number ----- 7N 4
- the product of k and 9, decreased by 25 ------ 9k 25
- the sum of 2 and L, divided by 6 ----- $2 + L \div 6$ or $L \div 6 + 2$
- x divided by 11, increased by 8 ------ $x \div 11 + 8$ or $8 + x \div 11$
- the difference of 12 and the product of b and 3 ----- 12 3b

INTEGRATED ALGEBRA 1 SUPPLEMENTARY HANDOUT FOR LESSON 2.3A

(Translating Words into Algebra)

PRACTICE PROBLEMS

Translate each phrase below into an algebraic expression.

1.	6 less than <i>t</i>	2.	g times 85
3.	z increased by 17	4.	the quotient of k and 4
5.	the quotient of 4 and k	6.	the product of 4 and k
7.	the sum of 4 and k	8.	the difference of 4 and k
9.	the difference of <i>k</i> and 4	10.	11 more than a number
11.	twice L	12.	18 divided into <i>m</i>
13.	18 divided by <i>m</i>	14.	6 plus <i>d</i>
15.	<i>y</i> minus 31	16.	three-eighths of b
17.	r quadrupled	18.	x decreased by y
19.	12 added to j	20.	80 split into <i>p</i> equal parts
21.	the product of ten and t , reduced by w		
22.	the sum of <i>a</i> and <i>b</i> , divided into 56		

- 23. the difference of 7 and *c*, divided by 3
- 24. increase 34 by the product of five and u
- 25. four times *h* split into 7 equal parts
- 26. 11 less than quotient of f and 8
- 27. twice t increased by the total of 59 and z
- 28. $\frac{5}{8}$ of *n* decreased by 43
- 29. the quantity p minus 15, times a
- 30. eighteen *r* more than 258

Pg. 3 of 4

INTEGRATED ALGEBRA 1 SUPPLEMENTARY HANDOUT FOR LESSON 2.3A (Translating Words into Algebra)

ANSWER KEY

1.	t-6	2.	$g \bullet 85 \text{ or } 85g$
3.	<i>z</i> + 17	4.	$k \div 4 \text{ or } ^k/_4$
5.	$4 \div \frac{4}{k}$	6.	$4 \times k$, or $4 \bullet k$, or $(4)k$, or, $4(k)$, or $(4)(k)$, or $4k$
7.	4 + k or k + 4	8.	4-k
9.	k - 4	10.	11 + n or $n + 11$ (You can use any letter.)
11.	2L	12.	$m \div 18 \text{ or }^m/_{18}$
13.	$18 \div m \text{ or } {}^{18}/_m$	14.	6+d
15.	<i>y</i> – 31	16.	$^{3}/_{8}b$ or $(^{3}/_{8})b$
17.	4r quadrupled	18.	x - y
19.	12 + j or j + 12	20.	$80 \div p \text{ or } {}^{80}/p$
21.	10t - w	22.	$56 \div (a+b) \text{ or } {}^{56}/_{(a+b)}$
23.	$(7-c) \div 3 \text{ or } (7-c)/3$	24.	34 + 5u
25.	$4h \div 7 \text{ or } {(4h)}/_7$	26.	$f \div 8 - 11$ or $(f \div 8) - 11$ or $f/_8 - 11$
27.	2t + (59 + z)	28.	$(\frac{5}{8})n - 43$ or $\frac{5}{8}n - 43$
29.	$(p-15) \times a \text{ or } (p-15)a$	30.	18r + 258 or $258 + 18r$